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Scientific context

seismic interpretation of rapidly rotating stars

D. R. Reese 2D oscillation computations with TOP



Introduction TOP code Numerical approach Performance Results

Scientific context

Effects of rapid rotation

centrifugal deformation

Coriolis force

significant distortion of
pulsation modes

need for a 2D numerical
approach
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The TOP code

TOP = Two-dimensional
Oscillation Program

top = “toupie” (in French)

http://johnmannophoto.com/blog/?p=103

initially started writing the code in 2007-2009 during first
postdoc in Sheffield

numerical method based on Lignières et al. (2006)
borrowed parts from LSB (= Linear Solver-Builder)

multi-domain version 2010-2011 (with J. Ballot)

non-adiabatic version 2012-2013 (with M.-A. Dupret)

B. Putigny unified multiple versions, added a python interface,
and started redoing the script language (∼2013-present)
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The TOP code

Basic characteristics

Fortran 90 code

Perl code for interpreting
pulsation equations in script file

this produces Fortran code,
prior to compilation
may be replaced by a newer
interpreter in C++ & other
language

Script file with
equations

Fortran
source
code

Executable
program

Pre-processing

Compilation
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The TOP code

Current script New script
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The TOP code

Numerical aspects and parallelisation

TOP relies on BLAS and LAPACK for most of the heavy
computations

good optimisation on most (super-)computers
provides OpenMP type parallelisation

experimented with ScaLAPACK library

provides MPI type parallelisation
may allow solving 3D problems (by increasing available RAM)
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Numerical approach

2D numerical approach

Angular discretisation:
spherical harmonic

Radial discretisation:

polytrope: Chebyshev
realistic model: FD or
splines

Uses a suitable coordinate
system (ζ, θ, φ) (cf.
Bonazzola et al., 1998)

[System of equations]⇒ Av = λBv
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Method

1. Find explicit equations
in spheroidal coordinates

3. Project equations on
spherical harmonic basis

2. Express unknowns us-
ing spherical harmonics

4. Carry out radial
discretisation (Chebyshev,
FD, splines)

Continuity equation
Euler’s equation
Adiabatic relation
Poisson’s equation

D. R. Reese 2D oscillation computations with TOP



Introduction TOP code Numerical approach Performance Results

Method

1. Find explicit equations
in spheroidal coordinates

3. Project equations on
spherical harmonic basis

2. Express unknowns us-
ing spherical harmonics

4. Carry out radial
discretisation (Chebyshev,
FD, splines)

For example: Φ(ζ, θ, ϕ) =
`max∑
`=|m|

Φ`
m(ζ)Y m

` (θ, ϕ)
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Method

1. Find explicit equations
in spheroidal coordinates

3. Project equations on
spherical harmonic basis

2. Express unknowns us-
ing spherical harmonics

4. Carry out radial
discretisation (Chebyshev,
FD, splines)

For example:

∫∫
4π

{Y m
` }
∗ {Continuity equation} dΩ
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Method

1. Find explicit equations
in spheroidal coordinates

3. Project equations on
spherical harmonic basis

2. Express unknowns us-
ing spherical harmonics

4. Carry out radial
discretisation (Chebyshev,
FD, splines)

Generalised eigenvalue problem: Av = λBv
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Horizontal discretisation

Only Coriolis Centrifugal def. Equat. symmetry

spectral convergence with spherical harmonics

problem couples all spherical harmonics of same parity
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Radial discretisation

0 5 10 15 20

0
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FD/spline derivation matrix

0 5 10 15 20

Chebyshev derivation matrix

Discretisation Convergence Grid
FD/splines algebraic flexible

Chebyshev polynomials exponential fixed
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Radial discretisation – Chebyshev polynomials

Characteristics

construct & factorise full matrix

good parallelisation

Illustration

Model: polytrope

Resolution: 5670× 5670

Nr = 81
Nθ = 10

Fill factor: 10.6 %

Matrix
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Radial discretisation – Chebyshev polynomials

Characteristics

construct & factorise band
matrix

poor parallelisation

Illustration

Model: SCF

Resolution: 8080× 8080

(Nr ,Nθ) = (101, 10)
Lower bands: 130
Upper bands: 140

Fill factor: 27.0 %

Matrix
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Matrix construction

the order of the equations and the variables are set by the
user

when dealing with FD/splines, group ` values together to
obtain banded matrix
fine-tune ordering to reduce number of bands
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Solving the eigenvalue problem

Arnoldi-Chebyshev algorithm

iterative procedure in which original matrix is approximated by
a smaller matrix obtained by successive iterations of: Av

starting with some initial vector v0

Spectral transformation

Av = λBv ⇔ (A− σB)−1 Bv = µv where λ = σ +
1

µ

when targeting eigenvalues close to σ, we need to solve
(A− σB)X = Y

it is therefore necessary to construct and factorise A− σB
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Polynomial eigenvalue problem

n∑
i=0

λiAiv = 0 ⇐⇒ Ax = λBx where

A =


A0 . . .
. Id . .

. .
. . . .

. . . Id

 , B =


−A1 −A2 · · · −An
Id . . .

.
. . . . .

. . Id .

 , x =


v
λv

.

.

.

λn−1v



Solving (A− σB)X = Y

1 X = [x0 . . . xn−1]T , Y = [y0 . . . yn−1]T

2 By induction, let us define (wi )i∈[1,n−1]:
w1 = σy1, wi+1 = σ(yi+1 + wi )

3 Solve: x0 =
(∑n

i=0 σ
iAi

)−1 (
y0 −

∑n−1
i=1 Ai+1wi

)
4 By induction: xi+1 = yi+1 + σxi
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The multi-domain approach

assumption: only consecutive domains are coupled

⇒ tridiagonal block matrix


A11 A12

A21 A22 A23

. . . An−1, n
An, n−1 An, n




X1

X2
...
Xn

 =


Y1

Y2
...
Yn
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Solving this system

use of Gauss’ pivot to eliminate Ai+1, i and Ai , i+1

one should not forget that matrix multiplication is not
commutative

“Factorisation”

Ã11 = A11 Ãi+1, i+1 = Ai+1, i+1 − Ai+1, i Ã
−1
i , i Ai , i+1

Downward sweep

Ỹ1 = Y1 Ỹi+1 = Yi+1 − Ai+1, i Ã
−1
i , i Ỹi

Upward sweep

Xn = Ã−1n, nỸn Xi−1 = Ã−1i−1, i−1

(
Ỹi−1 − Ai−1, i X̃i

)
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Radial discretisation – spectral multi-domain

Characteristics

tridiagonal block matrix

good parallelisation

Illustration

Model: ESTER

Resolution: 10150× 10150

Nr =
(30, 55, 45, 40, 40, 50, 70, 70, 30)
Nθ = 5

Fill factor: 25.4 %

Matrix
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Typical numerical resolutions

polytropes: Nr = 60, Nθ = 40

SCF: Nr = 1601, Nθ = 10 to 50

Note: `max ' 2Nθ
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Numerical cost for adiabatic calculations in ESTER models

Nr Nθ Memory (in Gb) Time (in min) Num. proc.
400 10 0.5 0.16 2
400 15 1.1 0.33 2
400 20 1.9 0.65 2
400 30 4.2 1.6 2
400 40 7.4 3.3 2
400 100 ∼70 24 25

Numerical cost for non-adiabatic calculations in ESTER models

Nr Nθ Memory (in Gb) Time (in min) Num. proc.
400 10 3.5
400 15 7.9
400 20 13.4 5 4
400 29 28.0 10 8
400 40 52.7 22 8
400 50 82.3 26 16
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Tests and precision of the method

Polytrope

Comparison with Christensen-Dalsgaard and Mullan (1994)
(Ω = 0): ∆ω/ω ∼ 10−7

Comparison with Lignières et al. (2006): ∆ω/ω ∼ 10−7

Comparison with Saio (1981) for small Ω

Variational principle: ∆ω/ω ∼ 10−7 when N = 3 and
∆ω/ω ∼ 10−5 when N = 1.5

Numerically: ∆ω/ω & 10−10

used to validate the ACOR, another 2D pulsation code
(Ouazzani et al. 2012)

SCF

Variational principle: ∆ω/ω ∼ 10−4 à 10−3

Numerically: ∆ω/ω ∼ 10−5 à 10−4
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Tests and precision of the method – ESTER models

Estimated accuracy

frequencies:

analytical EOS: 10−8 to 10−7

tabulated EOS: ∼ 10−4

excitation/damping rates: 10−2 to 10−1
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Rosette modes

(Reese, 2013)

first discovered by Ballot et
al. (2011) using the TOP
code

further studied by Takata
& Saio (2013, 2014,
2014b)
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