Introduction

TOP code

Numerical approach

Performance

Results

臣

2D oscillation computations in rapidly rotating stars with the TOP code

D. R. Reese

LESIA, Paris Observatory

November 29, 2018

Introduction ••	TOP code	Numerical approach	Performance	Results
Scientific o	context			

• seismic interpretation of rapidly rotating stars

Introduction	TOP code	Numerical approach	Performance	Results
00	0000	00000000000	0000	00
Scientific	context			

Effects of rapid rotation

- centrifugal deformation
- Coriolis force
- significant distortion of pulsation modes
- need for a 2D numerical approach

・ロト ・回ト ・ヨト

< ∃⇒

Introduction	TOP code	Numerical approach	Performance	Results
	0000			
The TOP	code			

- TOP = Two-dimensional Oscillation Program
- top = "toupie" (in French)

 $http://johnmannophoto.com/blog/?p{=}103$

イロン 不同 とうほう 不同 とう

臣

- TOP = Two-dimension
 Oscillation Program
- top = "toupie" (in French)

 $http://johnmannophoto.com/blog/?p{=}103$

- initially started writing the code in 2007-2009 during first postdoc in Sheffield
 - numerical method based on Lignières et al. (2006)
 - borrowed parts from LSB (= Linear Solver-Builder)
- multi-domain version 2010-2011 (with J. Ballot)
- non-adiabatic version 2012-2013 (with M.-A. Dupret)
- B. Putigny unified multiple versions, added a python interface, and started redoing the script language (~2013-present)

Introduction	TOP code ○●○○	Numerical approach	Performance	Results
The TOP	code			

Basic characteristics

- Fortran 90 code
- Perl code for interpreting pulsation equations in script file
 - this produces Fortran code, prior to compilation
 - may be replaced by a newer interpreter in C++ & other language

- 4 回 ト 4 三 ト 4 三 ト

Introduction	TOP code ○○●○	Numerical approach	Performance	Results
The TOP	code			

Current script

eq_cesam_all_lagrange_avg - /home/dreese/TOP/real2D/models/cesam/	• • •
Elle Edit Search Preferences Shell Macro Windows	Help
/home/dreese/TOP/real2D/models/cesam/eq_cesam_all_lagrange_avg byte 0 of 13087	L: 1 C: 0
<pre>i programma gradie i myt ingenig gradie adde i myt ingenig int adde i warit ad af "F R F R Hy Hy Hy Hy B Mic Philo Svarit ad af "F R F R Hy Hy Hy Hy S Hy R F R Hy Hy Hy Hy S Hy R F R Hy Hy Hy Hy S Hy R Hy Hy Hy Hy S Hy R Hy Hy Hy Hy S Hy R Hy Hy Hy Hy Hy Hy S Hy R Hy Hy Hy Hy Hy Hy S Hy R Hy Hy Hy Hy Hy S Hy R Hy Hy Hy Hy Hy S Hy Hy Hy Hy Hy Hy S Hy Hy Hy Hy Hy Hy S Hy Hy Hy Hy Hy S Hy Hy Hy Hy Hy Hy S Hy Hy Hy Hy S Hy Hy Hy Hy Hy S Hy Hy Hy S Hy Hy Hy S Hy Hy S Hy Hy Hy S Hy S</pre>	
40 instruction call init_avg(dmat%derive(:,:,0),dmat%lbder(0),dmat% 41 #	ubder(
44 sub rtt w0 Illm_a(r_map*roz*r_z/Gamma1,\$a,\$leq,\$lvar) dP_P 45 sub rtt w0 Illm_a(rata,\$a,\$leq,\$lvar) Er' 45 term sw0 240 Er' 47 term rt w0 -dble(\$lvar(\$j1)*(\$lvar(\$j1)+1)) Et	
49 termbc t nr w0 1d0 Er^-1(1) 50 termbc t nr w0 -dble(\$lvar(\$j1)) Et^-1(1) 51 Et^-1(1) Et^-1(1)	
Standstand ogan Standstand villa sir z/rozi*2, fa, fleg, flvar) Standstand villa siz (200 m Fortar L prozi 2, fa, fleg, flvar) Standstand villa sir (200 m Fortar L prozi 2, fa, fleg, flvar) Standstand villa sir (200 m Fortar L prozi 2, fleg, flvar) Standstand villa sir (200 m Fortar L prozi 2, fleg, flvar) Standstand villa sir (200 m Fortar L prozi 2, fleg, flvar)	Er Er Et Et

New script

cesam1D - /home/dreese/TOP_Bertrand/top/parser/examples/	
File Edit Search Preferences Shell Macro Windows	Help
home/dreese/TOP_Bertrand/top/parser/examples/cesam1D byte 0 of 1988	L: 1 C: 0
l input double mass input double bots input double bots input string modelfile input string pridfile input string gridfile input string gridfile input string fridfile input double Co input double Co	4
13 vor dP_P, (Er, Et), PhiP, Fhi 14 15 field pm, g_m, r, rhom, dg_m, rhom_z 16 scalar Gammal, Lambda 17 16 in	
1 + + + + + + + + + + + + + + + + + + +	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

ヘロア 人間 アメヨア 人間 アー

Ð,

Introduction	TOP code	Numerical approach	Performance	Results
	0000			
	code			

Numerical aspects and parallelisation

- TOP relies on BLAS and LAPACK for most of the heavy computations
 - good optimisation on most (super-)computers
 - provides OpenMP type parallelisation
- experimented with ScaLAPACK library
 - provides MPI type parallelisation
 - may allow solving 3D problems (by increasing available RAM)

Introduction	TOP code	Numerical approach ●00000000000	Performance	Results
Numerical	approach			

- 2D numerical approach
 - Angular discretisation: spherical harmonic
 - Radial discretisation:
 - polytrope: Chebyshev
 - realistic model: FD or splines
 - Uses a suitable coordinate system (ζ, θ, φ) (cf. Bonazzola et al., 1998)

・ロト ・回ト ・ヨト ・ヨト

[System of equations] $\Rightarrow Av = \lambda Bv$

Introduction	TOP code	Numerical approach	Performance	Results
Method				

Continuity equation Euler's equation Adiabatic relation Poisson's equation

Introduction	TOP code	Numerical approach ○●○○○○○○○○○	Performance	Results
Method				

2. Express unknowns using spherical harmonics

For example:
$$\Phi(\zeta, \theta, \varphi) = \sum_{\ell=|m|}^{\ell_{max}} \Phi_m^{\ell}(\zeta) Y_{\ell}^m(\theta, \varphi)$$

Introduction	TOP code	Numerical approach ⊙●○○○○○○○○○	Performance	Results
Method				

3. Project equations on spherical harmonic basis

2. Express unknowns using spherical harmonics

For example:

$$\iint_{4\pi} \{Y_{\ell}^{m}\}^{*} \{\text{Continuity equation}\} \, d\Omega$$

Introduction	TOP code	Numerical approach ⊙●○○○○○○○○○	Performance	Results
Method				

3. Project equations on spherical harmonic basis

2. Express unknowns using spherical harmonics

4. Carry out radial discretisation (Chebyshev, FD, splines)

Generalised eigenvalue problem: $Av = \lambda Bv$

Introduction	TOP code	Numerical approach	Performance	Results
Horizontal	discretisation			

- spectral convergence with spherical harmonics
- problem couples all spherical harmonics of same parity

Introduction	TOP code 0000	Numerical approach	Performance	Results 00
Radial discre	etisation			

2.00.00.00.00	Convergence	Grid
FD/splines	algebraic	flexible
Chebyshev polynomials	exponential	fixed

Radial discretisation – Chebyshev polynomials

イロト イヨト イヨト イヨト

臣

Dadial dia	erotiontion	Chabushaurahu	a a matala	
00	0000	0000000000	0000	00
Introduction	TOP code	Numerical approach	Performance	Results

Radial discretisation – Chebyshev polynomials

Characteristics

- construct & factorise band matrix
 - poor parallelisation

Illustration

- Model: SCF
- **Resolution**: 8080 × 8080
 - $(N_r, N_{\theta}) = (101, 10)$
 - Lower bands: 130
 - Upper bands: 140
- Fill factor: 27.0 %

回 とうほう うほとう

Introduction	TOP code	Numerical approach ○○○○○○●○○○○○	Performance	Results
Matrix co	nstruction			

- the order of the equations and the variables are set by the user
 - $\bullet\,$ when dealing with FD/splines, group $\ell\,$ values together to obtain banded matrix
 - fine-tune ordering to reduce number of bands

Introduction	TOP code	Numerical approach	Performance	Results
Solving the	eigenvalue	problem		

Arnoldi-Chebyshev algorithm

 iterative procedure in which original matrix is approximated by a smaller matrix obtained by successive iterations of: Av starting with some initial vector v₀

Introduction	TOP code	Numerical approach	Performance	Results
Solving the e	eigenvalue j	problem		

Arnoldi-Chebyshev algorithm

 iterative procedure in which original matrix is approximated by a smaller matrix obtained by successive iterations of: Av starting with some initial vector v₀

Spectral transformation

$$A\mathbf{v} = \lambda B\mathbf{v} \iff (A - \sigma B)^{-1} B\mathbf{v} = \mu \mathbf{v}$$
 where $\lambda = \sigma + rac{1}{\mu}$

- when targeting eigenvalues close to σ , we need to solve $(A \sigma B) X = Y$
- it is therefore necessary to construct and factorise $A \sigma B$

Introduction	TOP code	Numerical approach	Performance	Results
		000000000000		

Polynomial eigenvalue problem

Solving $(\mathcal{A} - \sigma \mathcal{B}) X = Y$

1
$$X = [x_0 \dots x_{n-1}]^T, \qquad Y = [y_0 \dots y_{n-1}]^T$$

2 By induction, let us define $(w_i)_{i \in [1, n-1]}$: $w_1 = \sigma y_1, \quad w_{i+1} = \sigma(y_{i+1} + w_i)$

3 Solve:
$$x_0 = \left(\sum_{i=0}^n \sigma^i A_i\right)^{-1} \left(y_0 - \sum_{i=1}^{n-1} A_{i+1} w_i\right)$$

9 By induction:
$$x_{i+1} = y_{i+1} + \sigma x_i$$

assumption: only consecutive domains are coupled tridiagonal block matrix

$$\begin{bmatrix} A_{11} & A_{12} & & \\ A_{21} & A_{22} & A_{23} & \\ & \ddots & A_{n-1,n} \\ & & A_{n,n-1} & A_{n,n} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

イロト イヨト イヨト イヨト

臣

Introduction	TOP code	Numerical approach	Performance	Results
		000000000000000000000000000000000000000		

Solving this system

- use of Gauss' pivot to eliminate $A_{i+1,i}$ and $A_{i,i+1}$
- one should not forget that matrix multiplication is not commutative

"Factorisation"

$$\tilde{A}_{11} = A_{11}$$
 $\tilde{A}_{i+1,i+1} = A_{i+1,i+1} - A_{i+1,i}\tilde{A}_{i,i}^{-1}A_{i,i+1}$

Downward sweep

$$ilde{Y}_1 = Y_1 \qquad ilde{Y}_{i+1} = Y_{i+1} - A_{i+1,i} ilde{A}_{i,i}^{-1} ilde{Y}_i$$

Upward sweep

$$X_n = \tilde{A}_{n,n}^{-1} \tilde{Y}_n$$
 $X_{i-1} = \tilde{A}_{i-1,i-1}^{-1} \left(\tilde{Y}_{i-1} - A_{i-1,i} \tilde{X}_i \right)$

イロン 人間 とくほとくほとう

э

Introduction	TOP code 0000	Numerical approach ○○○○○○○○○●	Performance	Results
	10 A.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

Radial discretisation - spectral multi-domain

Characteristics

- tridiagonal block matrix
 - good parallelisation

Illustration

- Model: ESTER
- **Resolution**: 10150×10150
 - N_r =

 (30, 55, 45, 40, 40, 50, 70, 70, 30)

 N_θ = 5

• Fill factor: 25.4 %

回 とうほう うほとう

Introduction	TOP code	Numerical approach	Performance ●○○○	Results
Typical nu	imerical reso			

- polytropes: $N_r = 60$, $N_{\theta} = 40$
- SCF: $N_r = 1601$, $N_{ heta} = 10$ to 50
- Note: $\ell_{\max} \simeq 2N_{\theta}$

イロン スロン イヨン イヨン

臣

Introduction	TOP code	Numerical approach	Performance	Results
			0000	

Numerical cost for adiabatic calculations in ESTER models

N _r	$N_{ heta}$	Memory (in Gb)	Time (in min)	Num. proc.
400	10	0.5	0.16	2
400	15	1.1	0.33	2
400	20	1.9	0.65	2
400	30	4.2	1.6	2
400	40	7.4	3.3	2
400	100	${\sim}70$	24	25

Numerical cost for non-adiabatic calculations in ESTER models

N _r	$N_{ heta}$	Memory (in Gb)	Time (in min)	Num. proc.
400	10	3.5		
400	15	7.9		
400	20	13.4	5	4
400	29	28.0	10	8
400	40	52.7	22	8
400	50	82.3	26	16
	_			

Introduction	TOP code	Numerical approach	Performance	Results
00	0000	00000000000	0000	00
Tests and	I precision of			

Polytrope

- Comparison with Christensen-Dalsgaard and Mullan (1994) $(\Omega = 0): \ \Delta \omega / \omega \sim 10^{-7}$
- Comparison with Lignières et al. (2006): $\Delta\omega/\omega\sim 10^{-7}$
- Comparison with Saio (1981) for small Ω
- Variational principle: $\Delta\omega/\omega \sim 10^{-7}$ when N=3 and $\Delta\omega/\omega \sim 10^{-5}$ when N=1.5
- Numerically: $\Delta \omega / \omega \gtrsim 10^{-10}$
- used to validate the ACOR, another 2D pulsation code (Ouazzani et al. 2012)

SCF

- Variational principle: $\Delta \omega / \omega \sim 10^{-4}$ à 10^{-3}
- Numerically: $\Delta \omega / \omega \sim 10^{-5}$ à 10^{-4}

Introduction	TOP code	Numerical approach	Performance ○○○●	Results
Tests and	precision of	the method – F	STFR models	

Estimated accuracy

- frequencies:
 - analytical EOS: 10^{-8} to 10^{-7}
 - \bullet tabulated EOS: $\sim 10^{-4}$

• excitation/damping rates: 10^{-2} to 10^{-1}

∢ ≣ ▶

 $\omega = 4.518$ 2, -1⁻

 $\omega = \frac{4.676}{9, -1^*}$

 $\omega = 4.799$ 15, -2⁻

 $\omega = 4.799$ 16, -3⁺

 $\omega = 5.384$ 30, -3*

 $\omega = 5.031$ 24, -2

5.143 -3°

5.146 -2^*

 $\omega = 5.618$ 34, -3*

キロマ キ動マ キボマ キボマ

Ť.

 $\omega = 4.686$ 10, -2*

 $\omega = 4.830$ 17, -3⁻

4.849

 $\substack{\omega=\ 4.713\ 11,\ -2^*}$

4.55

 $\omega = 4.728$ 12, -3

4.563-1⁻¹

 $4.915 \\ -2^*$ ω= 20.

4.753

 $\omega = 4.582$ 6, -2

 $\omega = 4.788$ 14, -1⁻

4.625

28

DO CO

 $\Omega = 0.4 \ \Omega k$

 $\substack{\omega = & 3.066 \\ 12, & 1^{\circ} \end{bmatrix}$

.0 $\substack{\omega = 3.086 \\ 13, 1^*}$

 $\substack{\omega = 2.654 \\ 6, 2^*}$

0

 $\omega = 3.582$ 22. 0

 $\omega = 2.758$ 8. 2⁺

- 1955

 $\substack{\omega = 2.109 \\ 1, 3^*}$

 $\omega = \frac{2.872}{9}$

 $\omega = 3.254$ 16, 1*

0

 $\substack{\omega = 3.263 \\ 17, 1^{\circ}}$

 $\substack{\omega = 3.627\\24, 0^*}$

 $\omega = 2.969$ 10, 2*

 $\substack{\omega = 3.405 \\ 18, 1^*}$

 $\substack{\omega = 3.692 \\ 25, 0^*}$

 $\substack{\omega = 4.017 \\ 33, -1^*}$

 $\substack{\omega = & 3.723 \\ 26, & 0^* }$

10 $\substack{\omega = \\ 27, 0^{\circ}}$

8.0

 $\substack{\omega = \\ 34, 0}^{\omega = 4.055}$

▲日▼ ▲圖▼ ▲画▼ ▲画▼

 $\substack{\omega = 3.451 \\ 20, 1^{\circ}}$

 $\omega = 3.183$ 14, 1⁻

 $\substack{\omega = 3.059 \\ 11, 1^*}$

 $\substack{\omega = & 3.413 \\ 19, & 0^* }$

 $\substack{\omega = 3.803 \\ 28, 0^{\circ}}$

 $\omega = 4.118$ 35, -1*

1

900

 $\substack{\omega = 3.990 \\ 32, 0^{\circ}}$

 $\substack{\omega=3.970\\31,\ -1^{\circ}}$

 $\omega = \frac{3.622}{23}, 0^{\circ}$

 $\substack{\omega = 3.903\\30, 0^*}$

 $\substack{\omega = 3.877\\29, -1^{\circ}}$

 $\Omega = 0.5 \Omega k$

 $\substack{\omega = 4.973 \\ 26, -3^*}$

 $\omega = 5.355$ 33, -3*

1

JO CO

 $\substack{\omega=5.103\\28, -3^{\circ}}$

00 $\omega = 4.618$ 14, -2

...

 $\substack{\omega = \\ 6, -1}^{\omega = 4.341}$

200 $\substack{\omega = \\ 7, -1^{\circ}}$

 $\omega = 4.541$ 12, -1

00 4.0

 $\substack{\omega=\ 4.821\ 18,\ -2^{\circ}}$

100

 $\substack{\omega = 4.946\\25, -2^*}$

100

 $\substack{\omega = 4.315 \\ 5, -1^*}$

 $\substack{\omega = 4.875 \\ 19, -2^*}$

P1 19 $\substack{\omega=\ 4.878\\20,\ -2^{-}}$

1000

• 0

 $\substack{\omega = 5.072 \\ 27, -3^*}$

010

10

 $\omega = 4.617$ 13, -2*

.....

 $\omega = 4.234$ 3, -1 $\omega = 4.295$ 4, -1* 3.6

0 ..

19

 $\omega = 4.458$ 10, -2*

010

21.19

.....

N10.

10

 $\substack{\omega = 4.529 \\ 11, -2^{\circ}}$

 $\substack{\omega = 4.457 \\ 9, -2^*}$

0

 $\substack{\omega = 4.214 \\ 2, -1^{\circ}}$

b d

(a a)

 $\substack{\omega=\ 4.729\\ 16,\ -2^*}$

 $\substack{\omega=\ 4.722\ 15,\ -2^{-}}$

 $\substack{\omega=\ 4.932\\22,\ -3^{\circ}}$

 $\substack{\omega=5.189\\29, -3^{\circ}}$

0 D

 $\substack{\omega = 4.172 \\ 1, -2^*}$

 $\substack{\omega = 4.449 \\ 8, -1^*}$

 $\substack{\omega=\ 4.932\\23,\ -3^*}$

 $\substack{\omega = \\ 30, \\ -3^*}$

40 $\substack{\omega = \\ 24, \\ -2^*}^{\omega = 4.942}$

0 0

 $\omega = 5.289$ 31, -3*

 $\ominus \circ \circ$

Introduction	TOP code	Numerical approach	Performance	Results ○●	
Rosette modes					

 $^{2M_{\circ}}$ $^{\Omega=0.7\Omega_{\kappa}}_{14.2\mu\text{Hz}}$ $^{\alpha=0.0}_{m=3}$ (Reese, 2013)

- first discovered by Ballot et al. (2011) using the TOP code
- further studied by Takata & Saio (2013, 2014, 2014b)

-≣->